Designing Systems in CHIPS
Interconnect Fabric

Puneet Gupta (puneet@ee.ucla.edu)
Sudhakar Pamartii
Ankur Mehta
CHIPS Design System Vision

Chip:
- Architecture, RTL, Synthesis
- IP integration, physical design
- IO, functional, physical, noise, power, thermal verification

Package:
- Package/substrate architecture exploration
- Package pin location, routing
- Timing, noise, power, assembly, IO verification

Board:
- Architecture, RTL, Synthesis
- IP integration, physical design
- IO, functional, physical, noise, power verification

Interconnect Fabric:
Thermal/Electrical/Mechanical Integrated Design System
Assembly of pre-verified dielets on a package-free substrate

TODAY:
- SOC Design

PROPOSED:
- Dielet Assembly on IF
- IP Fab and Test

3 years
1 year
3 months
6 months
3 months

UCLA ENGINEERING
Henry Samueli School of Engineering and Applied Science
Birthplace of the Internet
Overall SIF Design Flow

- **Key elements**
 - System-level thermal modeling and thermally-aware dielet floorplanning
 - Dielet assembly timing/noise/power analyses to integrate multiple PDKs (from heterogeneous dielets)
 - Resistive rather than transmission line behavior of interconnect
 - Simplified *parallel* I/Os for dielets and appropriate I/O selection
- **Build upon existing SoC design infrastructure**
SIF Design Components

• Dielets
 – Pre-fabricated bare die
 – Hard IP with perimeter IO
 • automated redistribution layer design
 – Discrete components

• Interconnect substrate
 – Fine pitch on rigid substrate
 • Need tolerance to unreliable bonding
 – Flexible substrate
 • Need to model flex stresses and failures
Electrical Environment in SIF

- Numerous I/Os
 - Potentially complex electromagnetic crosstalk
- Numerous supply domains to power the various dielets
 - Significant isolation/coupling concerns
- Several clock domains
 - Different frequencies and performance
 - Clock domain crossing and synchronization concerns
- Elaborate “dielet management” tasks
 - Selective sleep/wakeup of individual or groups of dielets
- Individual dielet failure – self-test, self-healing, and redundancy requirements
- Interconnect variability and resilience
Standardized Interfaces: Enabler for Fast IF-based System Design

- Physical standardization
 - pad/bump sizes, wire pitches
- Electrical standardization
 - voltage/current levels, resistive/capacitive load
- Functional standardization
 - Communication interfaces e.g., multi-Gb/s digital I/O, Z-controlled analog I/O, etc.
 - Dielet health monitor interfaces
 - Temperature, state info, error/mismatch info etc.
 - Facilitate system tuning, self-healing, self-testing
 - Control interfaces
 - Dielet configuration, etc
- Test standardization
 - Continuity tests, JTAG-like infrastructure for BIST
Active IF: Getting to Plug-n-Play Dielet Assembly

All green blocks are interface dielets ➔ active interconnect fabric

Other blocks are application specific dielets (ASDs)

- Active Interconnect Fabric
 - Library of dielets to handle necessary interface tasks
 - Regulator dielets, I/O dielets, clock dielets, test dielets ...
 - Library cells available as hard IP
Eventual Push-Button SIF Design

- Secure dielet repository
 - Inventory
 - Design description (behavioral, timing views, etc)
 - Models (thermal, PDK, etc)
- A visual hardware description system
 - Easy to use, cloud hosted to proliferate use in educational and Maker communities
 - Automated dielet selection from repository
 - Automated dielet assembly and verification
- “SIF in a day” with limited hardware design background
Next Frontier: Cyberphysical Systems on IF

- Cyber-physical dielet capabilities
 - RF
 - Optics
 - MEMS
- Additional design constraints
 - Structural (SIF weight)
 - Geometric (SIF shape)
- Interdisciplinary design automation
 - Electrical + mechanical + software subsystems
- “Robot in a day” with limited hardware design background